Training and Experience Matter
Improving Athlete ECG Screening, Interpretation, and Reproducibility

Jordan M. Prutkin, MD, MHS; Jonathan A. Drezner, MD

A preparticipation evaluation is recommended before engaging in competitive sports, although debate continues whether to include an ECG in addition to a history and physical examination. The limitations of preparticipation screening by history and physical examination alone for the identification of athletes with disorders at risk for sudden cardiac arrest have been recognized by 2 recent consensus statements within the United States. ECG screening of young athletes is endorsed by several major medical and sporting organizations, such as the European Society of Cardiology (ESC), International Olympic Committee, and Fédération Internationale de Football Association, as a means to improve the identification of conditions predisposing to sudden cardiac arrest. However, accurate implementation of an ECG screening program has many challenges and requires a physician infrastructure with adequate sports cardiology resources and training in contemporary athlete-specific ECG interpretation standards.

Evolution of ECG Interpretation Standards
Physiological changes in the athlete’s heart have made determination of normal ECG findings in the athlete a challenge. The 2010 criteria endorsed by the ESC represented the first attempt to acknowledge physiological ECG changes related to regular exercise and created 2 groups of ECG findings: group 1 (normal and training related) and group 2 (abnormal and training unrelated). The biggest weakness of these criteria was a high false-positive rate, especially in blacks.

Other athlete-specific ECG criteria emerged but were not widely used until the 2013 Seattle Criteria. The goal of this document was to reduce the false-positive rate while still maintaining the sensitivity to detect conditions at risk for sudden cardiac arrest. The Seattle Criteria led to an increase in the use of athlete-specific ECG interpretation standards, but recent studies suggested that specificity could be further improved. Sheikh et al created the Refined Criteria which, for the first time, included a borderline category whose findings were considered normal if seen alone, but required further evaluation if ≥2 findings were present.

As the newer criteria were developed, one of the major changes was a modification in the QT interval cutoff value that required additional evaluation (from a QTc >440 ms in males and >460 ms in females to a QTc ≥470 ms in males and ≥480 ms in females). Dutia et al showed, however, the continued difficulty in determining whether QT intervals are greater than these values even with higher cutoffs. In addition, identification of pathological Q waves and ST depression had poor agreement regardless of experience level. This may be influenced by the difficulty adjudicating whether an ST segment is ≥0.5 mm deep or a Q wave is ≥40 ms in duration or ≥25% the height of the R wave, which can be very fine values to determine at standard paper speed and gain. In addition, the lack of a computer-generated number to guide decision making may have made it more difficult to determine the depth and duration of values.

Several studies have compared the 3 criteria recommendations for ECG interpretation in athletes. With each evolution of ECG standards, the specificity has improved without any significant loss in sensitivity. In the current study, Dutia et al found a particularly high ECG positive rate using the ESC criteria even though there was a lower proportion of black athletes, a group whom the criteria are not thought to be as accurate. This study also included a slightly older population which may have allowed more time for phenotypic changes to occur.

Experience Matters
In this study, the cost per athlete screened for inexperienced cardiologists was $175 USD (95% confidence interval, $142–$228) and for experienced cardiologists was $101 USD (95% confidence interval, $83–$131). In a different cohort of 4295 athletes, these authors have previously shown a lower
Table. Studies Examining the Total Positive Rate of Abnormal ECGs Using the European Society of Cardiology, Seattle Criteria, and Refined Criteria

<table>
<thead>
<tr>
<th>Study</th>
<th>European Society of Cardiology</th>
<th>Seattle Criteria</th>
<th>Refined Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dhutia et al 2017; inexperienced</td>
<td>39.0%</td>
<td>16.1%</td>
<td>7.2%</td>
</tr>
<tr>
<td>Dhutia et al 2017; experienced</td>
<td>31.3%</td>
<td>8.0%</td>
<td>5.5%</td>
</tr>
<tr>
<td>Dhutia et al 2016</td>
<td>21.8%</td>
<td>6.0%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Fuller et al 2016</td>
<td>10.7%</td>
<td>2.8%</td>
<td>2.8%</td>
</tr>
<tr>
<td>Sheikh et al 2014</td>
<td>21.5%</td>
<td>9.6%</td>
<td>6.6%</td>
</tr>
<tr>
<td>Riding et al 2015</td>
<td>22.3%</td>
<td>11.6%</td>
<td>5.3%</td>
</tr>
<tr>
<td>Brosnan et al 2014</td>
<td>17.0%</td>
<td>4.2%</td>
<td>...</td>
</tr>
</tbody>
</table>

rate of ECG abnormalities and costs of $110 USD per athlete screened for the ESC criteria, $92 USD for the Seattle Criteria, and $87 USD for the Refined Criteria. The current study adds valuable insights as to how these costs may vary based on who is doing the ECG reading and athlete evaluation.

Malhotra et al examined the cost of screening in the United States using the ESC criteria. Although they did not directly report costs per athlete screened, extrapolating from their data shows it was $607 USD. The cost is greater largely because of the higher number of athletes getting secondary testing for ECG findings no longer considered abnormal (ie, isolated voltage criteria for left ventricular hypertrophy and any T-wave inversion in V1, V2, or V3). In addition, costs are substantially higher in the United States. In the Malhotra et al study, the cost of an echocardiogram was $900 USD in 2011 compared with the $112 USD in the current study by Dhutia et al. It is important to recognize, therefore, that the cost estimates in the current study may be gross underestimations of true costs in the United States.

Other factors may also influence costs, such as the proportion of each abnormality seen as the extent of secondary evaluation is different. In our experience, Wolff–Parkinson–White pattern is the most common ECG abnormality, although none was seen in this study.

Moving Forward

As this study was completed, the new International Recommendations for ECG Interpretation in Athletes were published. This expert consensus statement was designed as an update to the Seattle Criteria and the Refined Criteria. Endorsed by 17 international sports medicine and cardiology societies, this guideline likely will emerge as the standard of care for ECG interpretation in athletes. Key changes compared with the Seattle Criteria include recognition of juvenile T-wave inversion as a normal finding, a new definition for pathological Q waves, recommended secondary testing for single lead T-wave inversion in V1 or V2, and the addition of a borderline category for right bundle branch block, axis deviation, and atrial enlargement in which ≥2 findings are needed to trigger more evaluation. The international criteria also include recommendations for the initial workup for specific ECG abnormalities. The potential benefit of this link between specific ECG abnormalities and the recommended secondary testing is to reduce diagnostic variability among providers.

We have shown that education on athlete ECG criteria can improve interpretation accuracy regardless of medical specialty and training level. Enhanced education will improve the reproducibility and accuracy of ECG interpretation. In addition, there should be ongoing efforts to conduct ECG interpretation in athletes in clinical practice to maintain and sharpen skills. ECG interpretation is complex, and it is not enough to do a single screening once a year. Like other medical skills, it must be done repeatedly so proficiency is enhanced.

As this study shows, the bias in ECG interpretation is to overcall abnormalities to be safe. Recognizing physiological findings is a critical step to minimize false-positive rates and the costs of unnecessary secondary testing. Fortunately, each revision of athlete ECG standards has improved specificity, and the international criteria should be no exception. A greater focus on physician education, training, and practical experience should continue to improve the accuracy and reproducibility of ECG screening in athletes.

Disclosures

None.

References

Prutkin and Drezner Improving Athlete ECG Screening

Key WORDS: Editorials ◼ athletes ◼ cardiologists ◼ reading ◼ sports